2025-01-19 15:44:28 -08:00

1081 lines
28 KiB
Java

package com.carrotsearch.hppc;
import static com.carrotsearch.hppc.Containers.*;
import static com.carrotsearch.hppc.HashContainers.*;
import com.carrotsearch.hppc.cursors.*;
import com.carrotsearch.hppc.predicates.*;
import com.carrotsearch.hppc.procedures.*;
import java.util.*;
/**
* A hash map of <code>int</code> to <code>int</code>, implemented using open addressing with linear
* probing for collision resolution.
*
* @see <a href="{@docRoot}/overview-summary.html#interfaces">HPPC interfaces diagram</a>
*/
@com.carrotsearch.hppc.Generated(
date = "2024-06-04T15:20:17+0200",
value = "KTypeVTypeHashMap.java")
public class IntIntHashMap implements IntIntMap, Preallocable, Cloneable, Accountable {
/** The array holding keys. */
public int[] keys;
/** The array holding values. */
public int[] values;
/**
* The number of stored keys (assigned key slots), excluding the special "empty" key, if any (use
* {@link #size()} instead).
*
* @see #size()
*/
protected int assigned;
/** Mask for slot scans in {@link #keys}. */
protected int mask;
/** Expand (rehash) {@link #keys} when {@link #assigned} hits this value. */
protected int resizeAt;
/** Special treatment for the "empty slot" key marker. */
protected boolean hasEmptyKey;
/** The load factor for {@link #keys}. */
protected double loadFactor;
/** Seed used to ensure the hash iteration order is different from an iteration to another. */
protected int iterationSeed;
/** New instance with sane defaults. */
public IntIntHashMap() {
this(DEFAULT_EXPECTED_ELEMENTS);
}
/**
* New instance with sane defaults.
*
* @param expectedElements The expected number of elements guaranteed not to cause buffer
* expansion (inclusive).
*/
public IntIntHashMap(int expectedElements) {
this(expectedElements, DEFAULT_LOAD_FACTOR);
}
/**
* New instance with the provided defaults.
*
* @param expectedElements The expected number of elements guaranteed not to cause a rehash
* (inclusive).
* @param loadFactor The load factor for internal buffers. Insane load factors (zero, full
* capacity) are rejected by {@link #verifyLoadFactor(double)}.
*/
public IntIntHashMap(int expectedElements, double loadFactor) {
this.loadFactor = verifyLoadFactor(loadFactor);
iterationSeed = HashContainers.nextIterationSeed();
ensureCapacity(expectedElements);
}
/** Create a hash map from all key-value pairs of another container. */
public IntIntHashMap(IntIntAssociativeContainer container) {
this(container.size());
putAll(container);
}
/** {@inheritDoc} */
@Override
public int put(int key, int value) {
assert assigned < mask + 1;
final int mask = this.mask;
if (((key) == 0)) {
int previousValue = hasEmptyKey ? values[mask + 1] : 0;
hasEmptyKey = true;
values[mask + 1] = value;
return previousValue;
} else {
final int[] keys = this.keys;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
final int previousValue = values[slot];
values[slot] = value;
return previousValue;
}
slot = (slot + 1) & mask;
}
if (assigned == resizeAt) {
allocateThenInsertThenRehash(slot, key, value);
} else {
keys[slot] = key;
values[slot] = value;
}
assigned++;
return 0;
}
}
/** {@inheritDoc} */
@Override
public int putAll(IntIntAssociativeContainer container) {
final int count = size();
for (IntIntCursor c : container) {
put(c.key, c.value);
}
return size() - count;
}
/** Puts all key/value pairs from a given iterable into this map. */
@Override
public int putAll(Iterable<? extends IntIntCursor> iterable) {
final int count = size();
for (IntIntCursor c : iterable) {
put(c.key, c.value);
}
return size() - count;
}
/**
* If <code>key</code> exists, <code>putValue</code> is inserted into the map, otherwise any
* existing value is incremented by <code>additionValue</code>.
*
* @param key The key of the value to adjust.
* @param putValue The value to put if <code>key</code> does not exist.
* @param incrementValue The value to add to the existing value if <code>key</code> exists.
* @return Returns the current value associated with <code>key</code> (after changes).
*/
@Override
public int putOrAdd(int key, int putValue, int incrementValue) {
assert assigned < mask + 1;
int keyIndex = indexOf(key);
if (indexExists(keyIndex)) {
putValue = ((int) ((values[keyIndex]) + (incrementValue)));
indexReplace(keyIndex, putValue);
} else {
indexInsert(keyIndex, key, putValue);
}
return putValue;
}
/**
* Adds <code>incrementValue</code> to any existing value for the given <code>key</code> or
* inserts <code>incrementValue</code> if <code>key</code> did not previously exist.
*
* @param key The key of the value to adjust.
* @param incrementValue The value to put or add to the existing value if <code>key</code> exists.
* @return Returns the current value associated with <code>key</code> (after changes).
*/
@Override
public int addTo(int key, int incrementValue) {
return putOrAdd(key, incrementValue, incrementValue);
}
/** {@inheritDoc} */
@Override
public int remove(int key) {
final int mask = this.mask;
if (((key) == 0)) {
if (!hasEmptyKey) {
return 0;
}
hasEmptyKey = false;
int previousValue = values[mask + 1];
values[mask + 1] = 0;
return previousValue;
} else {
final int[] keys = this.keys;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
final int previousValue = values[slot];
shiftConflictingKeys(slot);
return previousValue;
}
slot = (slot + 1) & mask;
}
return 0;
}
}
/** {@inheritDoc} */
@Override
public int removeAll(IntContainer other) {
final int before = size();
// Try to iterate over the smaller set of values or
// over the container that isn't implementing
// efficient contains() lookup.
if (other.size() >= size() && other instanceof IntLookupContainer) {
if (hasEmptyKey && other.contains(0)) {
hasEmptyKey = false;
values[mask + 1] = 0;
}
final int[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; ) {
int existing;
if (!((existing = keys[slot]) == 0) && other.contains(existing)) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
} else {
for (IntCursor c : other) {
remove(c.value);
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public int removeAll(IntIntPredicate predicate) {
final int before = size();
final int mask = this.mask;
if (hasEmptyKey) {
if (predicate.apply(0, values[mask + 1])) {
hasEmptyKey = false;
values[mask + 1] = 0;
}
}
final int[] keys = this.keys;
final int[] values = this.values;
for (int slot = 0; slot <= mask; ) {
int existing;
if (!((existing = keys[slot]) == 0) && predicate.apply(existing, values[slot])) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public int removeAll(IntPredicate predicate) {
final int before = size();
if (hasEmptyKey) {
if (predicate.apply(0)) {
hasEmptyKey = false;
values[mask + 1] = 0;
}
}
final int[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; ) {
int existing;
if (!((existing = keys[slot]) == 0) && predicate.apply(existing)) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public int get(int key) {
if (((key) == 0)) {
return hasEmptyKey ? values[mask + 1] : 0;
} else {
final int[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return values[slot];
}
slot = (slot + 1) & mask;
}
return 0;
}
}
/** {@inheritDoc} */
@Override
public int getOrDefault(int key, int defaultValue) {
if (((key) == 0)) {
return hasEmptyKey ? values[mask + 1] : defaultValue;
} else {
final int[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return values[slot];
}
slot = (slot + 1) & mask;
}
return defaultValue;
}
}
/** {@inheritDoc} */
@Override
public boolean containsKey(int key) {
if (((key) == 0)) {
return hasEmptyKey;
} else {
final int[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return true;
}
slot = (slot + 1) & mask;
}
return false;
}
}
/** {@inheritDoc} */
@Override
public int indexOf(int key) {
final int mask = this.mask;
if (((key) == 0)) {
return hasEmptyKey ? mask + 1 : ~(mask + 1);
} else {
final int[] keys = this.keys;
int slot = hashKey(key) & mask;
int existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return slot;
}
slot = (slot + 1) & mask;
}
return ~slot;
}
}
/** {@inheritDoc} */
@Override
public boolean indexExists(int index) {
assert index < 0 || (index >= 0 && index <= mask) || (index == mask + 1 && hasEmptyKey);
return index >= 0;
}
/** {@inheritDoc} */
@Override
public int indexGet(int index) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
return values[index];
}
/** {@inheritDoc} */
@Override
public int indexReplace(int index, int newValue) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
int previousValue = values[index];
values[index] = newValue;
return previousValue;
}
/** {@inheritDoc} */
@Override
public void indexInsert(int index, int key, int value) {
assert index < 0 : "The index must not point at an existing key.";
index = ~index;
if (((key) == 0)) {
assert index == mask + 1;
values[index] = value;
hasEmptyKey = true;
} else {
assert ((keys[index]) == 0);
if (assigned == resizeAt) {
allocateThenInsertThenRehash(index, key, value);
} else {
keys[index] = key;
values[index] = value;
}
assigned++;
}
}
/** {@inheritDoc} */
@Override
public int indexRemove(int index) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
int previousValue = values[index];
if (index > mask) {
assert index == mask + 1;
hasEmptyKey = false;
values[index] = 0;
} else {
shiftConflictingKeys(index);
}
return previousValue;
}
/** {@inheritDoc} */
@Override
public void clear() {
assigned = 0;
hasEmptyKey = false;
Arrays.fill(keys, 0);
}
/** {@inheritDoc} */
@Override
public void release() {
assigned = 0;
hasEmptyKey = false;
keys = null;
values = null;
ensureCapacity(Containers.DEFAULT_EXPECTED_ELEMENTS);
}
/** {@inheritDoc} */
@Override
public int size() {
return assigned + (hasEmptyKey ? 1 : 0);
}
/** {@inheritDoc} */
public boolean isEmpty() {
return size() == 0;
}
/** {@inheritDoc} */
@Override
public int hashCode() {
int h = hasEmptyKey ? 0xDEADBEEF : 0;
for (IntIntCursor c : this) {
h += BitMixer.mix(c.key) + BitMixer.mix(c.value);
}
return h;
}
/** {@inheritDoc} */
@Override
public boolean equals(Object obj) {
return (this == obj)
|| (obj != null && getClass() == obj.getClass() && equalElements(getClass().cast(obj)));
}
/** Return true if all keys of some other container exist in this container. */
protected boolean equalElements(IntIntHashMap other) {
if (other.size() != size()) {
return false;
}
for (IntIntCursor c : other) {
int key = c.key;
if (!containsKey(key) || !((c.value) == (get(key)))) {
return false;
}
}
return true;
}
/**
* Ensure this container can hold at least the given number of keys (entries) without resizing its
* buffers.
*
* @param expectedElements The total number of keys, inclusive.
*/
@Override
public void ensureCapacity(int expectedElements) {
if (expectedElements > resizeAt || keys == null) {
final int[] prevKeys = this.keys;
final int[] prevValues = this.values;
allocateBuffers(minBufferSize(expectedElements, loadFactor));
if (prevKeys != null && !isEmpty()) {
rehash(prevKeys, prevValues);
}
}
}
@Override
public long ramBytesAllocated() {
// int: iterationSeed, assigned, mask, resizeAt
// double: loadFactor
// boolean: hasEmptyKey
return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER
+ 4 * Integer.BYTES
+ Double.BYTES
+ 1
+ RamUsageEstimator.shallowSizeOfArray(keys)
+ RamUsageEstimator.shallowSizeOfArray(values);
}
@Override
public long ramBytesUsed() {
// int: iterationSeed, assigned, mask, resizeAt
// double: loadFactor
// boolean: hasEmptyKey
return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER
+ 4 * Integer.BYTES
+ Double.BYTES
+ 1
+ RamUsageEstimator.shallowUsedSizeOfArray(keys, size())
+ RamUsageEstimator.shallowUsedSizeOfArray(values, size());
}
/**
* Provides the next iteration seed used to build the iteration starting slot and offset
* increment. This method does not need to be synchronized, what matters is that each thread gets
* a sequence of varying seeds.
*/
protected int nextIterationSeed() {
return iterationSeed = BitMixer.mixPhi(iterationSeed);
}
/** An iterator implementation for {@link #iterator}. */
private final class EntryIterator extends AbstractIterator<IntIntCursor> {
private final IntIntCursor cursor;
private final int increment;
private int index;
private int slot;
public EntryIterator() {
cursor = new IntIntCursor();
int seed = nextIterationSeed();
increment = iterationIncrement(seed);
slot = seed & mask;
}
@Override
protected IntIntCursor fetch() {
final int mask = IntIntHashMap.this.mask;
while (index <= mask) {
int existing;
index++;
slot = (slot + increment) & mask;
if (!((existing = keys[slot]) == 0)) {
cursor.index = slot;
cursor.key = existing;
cursor.value = values[slot];
return cursor;
}
}
if (index == mask + 1 && hasEmptyKey) {
cursor.index = index;
cursor.key = 0;
cursor.value = values[index++];
return cursor;
}
return done();
}
}
/** {@inheritDoc} */
@Override
public Iterator<IntIntCursor> iterator() {
return new EntryIterator();
}
/** {@inheritDoc} */
@Override
public <T extends IntIntProcedure> T forEach(T procedure) {
final int[] keys = this.keys;
final int[] values = this.values;
if (hasEmptyKey) {
procedure.apply(0, values[mask + 1]);
}
int seed = nextIterationSeed();
int inc = iterationIncrement(seed);
for (int i = 0, mask = this.mask, slot = seed & mask;
i <= mask;
i++, slot = (slot + inc) & mask) {
if (!((keys[slot]) == 0)) {
procedure.apply(keys[slot], values[slot]);
}
}
return procedure;
}
/** {@inheritDoc} */
@Override
public <T extends IntIntPredicate> T forEach(T predicate) {
final int[] keys = this.keys;
final int[] values = this.values;
if (hasEmptyKey) {
if (!predicate.apply(0, values[mask + 1])) {
return predicate;
}
}
int seed = nextIterationSeed();
int inc = iterationIncrement(seed);
for (int i = 0, mask = this.mask, slot = seed & mask;
i <= mask;
i++, slot = (slot + inc) & mask) {
if (!((keys[slot]) == 0)) {
if (!predicate.apply(keys[slot], values[slot])) {
break;
}
}
}
return predicate;
}
/**
* Returns a specialized view of the keys of this associated container. The view additionally
* implements {@link ObjectLookupContainer}.
*/
public KeysContainer keys() {
return new KeysContainer();
}
/** A view of the keys inside this hash map. */
public final class KeysContainer extends AbstractIntCollection implements IntLookupContainer {
private final IntIntHashMap owner = IntIntHashMap.this;
@Override
public boolean contains(int e) {
return owner.containsKey(e);
}
@Override
public <T extends IntProcedure> T forEach(final T procedure) {
owner.forEach((IntIntProcedure) (k, v) -> procedure.apply(k));
return procedure;
}
@Override
public <T extends IntPredicate> T forEach(final T predicate) {
owner.forEach((IntIntPredicate) (key, value) -> predicate.apply(key));
return predicate;
}
@Override
public boolean isEmpty() {
return owner.isEmpty();
}
@Override
public Iterator<IntCursor> iterator() {
return new KeysIterator();
}
@Override
public int size() {
return owner.size();
}
@Override
public void clear() {
owner.clear();
}
@Override
public void release() {
owner.release();
}
@Override
public int removeAll(IntPredicate predicate) {
return owner.removeAll(predicate);
}
@Override
public int removeAll(final int e) {
if (owner.containsKey(e)) {
owner.remove(e);
return 1;
} else {
return 0;
}
}
}
;
/** An iterator over the set of assigned keys. */
private final class KeysIterator extends AbstractIterator<IntCursor> {
private final IntCursor cursor;
private final int increment;
private int index;
private int slot;
public KeysIterator() {
cursor = new IntCursor();
int seed = nextIterationSeed();
increment = iterationIncrement(seed);
slot = seed & mask;
}
@Override
protected IntCursor fetch() {
final int mask = IntIntHashMap.this.mask;
while (index <= mask) {
int existing;
index++;
slot = (slot + increment) & mask;
if (!((existing = keys[slot]) == 0)) {
cursor.index = slot;
cursor.value = existing;
return cursor;
}
}
if (index == mask + 1 && hasEmptyKey) {
cursor.index = index++;
cursor.value = 0;
return cursor;
}
return done();
}
}
/**
* @return Returns a container with all values stored in this map.
*/
@Override
public IntCollection values() {
return new ValuesContainer();
}
/** A view over the set of values of this map. */
private final class ValuesContainer extends AbstractIntCollection {
private final IntIntHashMap owner = IntIntHashMap.this;
@Override
public int size() {
return owner.size();
}
@Override
public boolean isEmpty() {
return owner.isEmpty();
}
@Override
public boolean contains(int value) {
for (IntIntCursor c : owner) {
if (((value) == (c.value))) {
return true;
}
}
return false;
}
@Override
public <T extends IntProcedure> T forEach(T procedure) {
for (IntIntCursor c : owner) {
procedure.apply(c.value);
}
return procedure;
}
@Override
public <T extends IntPredicate> T forEach(T predicate) {
for (IntIntCursor c : owner) {
if (!predicate.apply(c.value)) {
break;
}
}
return predicate;
}
@Override
public Iterator<IntCursor> iterator() {
return new ValuesIterator();
}
@Override
public int removeAll(final int e) {
return owner.removeAll((key, value) -> ((e) == (value)));
}
@Override
public int removeAll(final IntPredicate predicate) {
return owner.removeAll((key, value) -> predicate.apply(value));
}
@Override
public void clear() {
owner.clear();
}
@Override
public void release() {
owner.release();
}
}
/** An iterator over the set of assigned values. */
private final class ValuesIterator extends AbstractIterator<IntCursor> {
private final IntCursor cursor;
private final int increment;
private int index;
private int slot;
public ValuesIterator() {
cursor = new IntCursor();
int seed = nextIterationSeed();
increment = iterationIncrement(seed);
slot = seed & mask;
}
@Override
protected IntCursor fetch() {
final int mask = IntIntHashMap.this.mask;
while (index <= mask) {
index++;
slot = (slot + increment) & mask;
if (!((keys[slot]) == 0)) {
cursor.index = slot;
cursor.value = values[slot];
return cursor;
}
}
if (index == mask + 1 && hasEmptyKey) {
cursor.index = index;
cursor.value = values[index++];
return cursor;
}
return done();
}
}
/** {@inheritDoc} */
@Override
public IntIntHashMap clone() {
try {
IntIntHashMap cloned = (IntIntHashMap) super.clone();
cloned.keys = keys.clone();
cloned.values = values.clone();
cloned.hasEmptyKey = hasEmptyKey;
cloned.iterationSeed = HashContainers.nextIterationSeed();
return cloned;
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
/** Convert the contents of this map to a human-friendly string. */
@Override
public String toString() {
final StringBuilder buffer = new StringBuilder();
buffer.append("[");
boolean first = true;
for (IntIntCursor cursor : this) {
if (!first) {
buffer.append(", ");
}
buffer.append(cursor.key);
buffer.append("=>");
buffer.append(cursor.value);
first = false;
}
buffer.append("]");
return buffer.toString();
}
@Override
public String visualizeKeyDistribution(int characters) {
return IntBufferVisualizer.visualizeKeyDistribution(keys, mask, characters);
}
/** Creates a hash map from two index-aligned arrays of key-value pairs. */
public static IntIntHashMap from(int[] keys, int[] values) {
if (keys.length != values.length) {
throw new IllegalArgumentException(
"Arrays of keys and values must have an identical length.");
}
IntIntHashMap map = new IntIntHashMap(keys.length);
for (int i = 0; i < keys.length; i++) {
map.put(keys[i], values[i]);
}
return map;
}
/**
* Returns a hash code for the given key.
*
* <p>The output from this function should evenly distribute keys across the entire integer range.
*/
protected int hashKey(int key) {
assert !((key) == 0); // Handled as a special case (empty slot marker).
return BitMixer.mixPhi(key);
}
/**
* Validate load factor range and return it. Override and suppress if you need insane load
* factors.
*/
protected double verifyLoadFactor(double loadFactor) {
checkLoadFactor(loadFactor, MIN_LOAD_FACTOR, MAX_LOAD_FACTOR);
return loadFactor;
}
/** Rehash from old buffers to new buffers. */
protected void rehash(int[] fromKeys, int[] fromValues) {
assert fromKeys.length == fromValues.length
&& HashContainers.checkPowerOfTwo(fromKeys.length - 1);
// Rehash all stored key/value pairs into the new buffers.
final int[] keys = this.keys;
final int[] values = this.values;
final int mask = this.mask;
int existing;
// Copy the zero element's slot, then rehash everything else.
int from = fromKeys.length - 1;
keys[keys.length - 1] = fromKeys[from];
values[values.length - 1] = fromValues[from];
while (--from >= 0) {
if (!((existing = fromKeys[from]) == 0)) {
int slot = hashKey(existing) & mask;
while (!((keys[slot]) == 0)) {
slot = (slot + 1) & mask;
}
keys[slot] = existing;
values[slot] = fromValues[from];
}
}
}
/**
* Allocate new internal buffers. This method attempts to allocate and assign internal buffers
* atomically (either allocations succeed or not).
*/
protected void allocateBuffers(int arraySize) {
assert Integer.bitCount(arraySize) == 1;
// Ensure no change is done if we hit an OOM.
int[] prevKeys = this.keys;
int[] prevValues = this.values;
try {
int emptyElementSlot = 1;
this.keys = (new int[arraySize + emptyElementSlot]);
this.values = (new int[arraySize + emptyElementSlot]);
} catch (OutOfMemoryError e) {
this.keys = prevKeys;
this.values = prevValues;
throw new BufferAllocationException(
"Not enough memory to allocate buffers for rehashing: %,d -> %,d",
e, this.mask + 1, arraySize);
}
this.resizeAt = expandAtCount(arraySize, loadFactor);
this.mask = arraySize - 1;
}
/**
* This method is invoked when there is a new key/ value pair to be inserted into the buffers but
* there is not enough empty slots to do so.
*
* <p>New buffers are allocated. If this succeeds, we know we can proceed with rehashing so we
* assign the pending element to the previous buffer (possibly violating the invariant of having
* at least one empty slot) and rehash all keys, substituting new buffers at the end.
*/
protected void allocateThenInsertThenRehash(int slot, int pendingKey, int pendingValue) {
assert assigned == resizeAt && ((keys[slot]) == 0) && !((pendingKey) == 0);
// Try to allocate new buffers first. If we OOM, we leave in a consistent state.
final int[] prevKeys = this.keys;
final int[] prevValues = this.values;
allocateBuffers(nextBufferSize(mask + 1, size(), loadFactor));
assert this.keys.length > prevKeys.length;
// We have succeeded at allocating new data so insert the pending key/value at
// the free slot in the old arrays before rehashing.
prevKeys[slot] = pendingKey;
prevValues[slot] = pendingValue;
// Rehash old keys, including the pending key.
rehash(prevKeys, prevValues);
}
/**
* Shift all the slot-conflicting keys and values allocated to (and including) <code>slot</code>.
*/
protected void shiftConflictingKeys(int gapSlot) {
final int[] keys = this.keys;
final int[] values = this.values;
final int mask = this.mask;
// Perform shifts of conflicting keys to fill in the gap.
int distance = 0;
while (true) {
final int slot = (gapSlot + (++distance)) & mask;
final int existing = keys[slot];
if (((existing) == 0)) {
break;
}
final int idealSlot = hashKey(existing);
final int shift = (slot - idealSlot) & mask;
if (shift >= distance) {
// Entry at this position was originally at or before the gap slot.
// Move the conflict-shifted entry to the gap's position and repeat the procedure
// for any entries to the right of the current position, treating it
// as the new gap.
keys[gapSlot] = existing;
values[gapSlot] = values[slot];
gapSlot = slot;
distance = 0;
}
}
// Mark the last found gap slot without a conflict as empty.
keys[gapSlot] = 0;
values[gapSlot] = 0;
assigned--;
}
}