package com.carrotsearch.hppc; import static com.carrotsearch.hppc.Containers.*; import static com.carrotsearch.hppc.HashContainers.*; import com.carrotsearch.hppc.cursors.*; import com.carrotsearch.hppc.predicates.*; import com.carrotsearch.hppc.procedures.*; import java.util.*; /** * A hash map of char to double, implemented using open addressing with * linear probing for collision resolution. * * @see HPPC interfaces diagram */ @com.carrotsearch.hppc.Generated( date = "2024-06-04T15:20:16+0200", value = "KTypeVTypeHashMap.java") public class CharDoubleHashMap implements CharDoubleMap, Preallocable, Cloneable, Accountable { /** The array holding keys. */ public char[] keys; /** The array holding values. */ public double[] values; /** * The number of stored keys (assigned key slots), excluding the special "empty" key, if any (use * {@link #size()} instead). * * @see #size() */ protected int assigned; /** Mask for slot scans in {@link #keys}. */ protected int mask; /** Expand (rehash) {@link #keys} when {@link #assigned} hits this value. */ protected int resizeAt; /** Special treatment for the "empty slot" key marker. */ protected boolean hasEmptyKey; /** The load factor for {@link #keys}. */ protected double loadFactor; /** Seed used to ensure the hash iteration order is different from an iteration to another. */ protected int iterationSeed; /** New instance with sane defaults. */ public CharDoubleHashMap() { this(DEFAULT_EXPECTED_ELEMENTS); } /** * New instance with sane defaults. * * @param expectedElements The expected number of elements guaranteed not to cause buffer * expansion (inclusive). */ public CharDoubleHashMap(int expectedElements) { this(expectedElements, DEFAULT_LOAD_FACTOR); } /** * New instance with the provided defaults. * * @param expectedElements The expected number of elements guaranteed not to cause a rehash * (inclusive). * @param loadFactor The load factor for internal buffers. Insane load factors (zero, full * capacity) are rejected by {@link #verifyLoadFactor(double)}. */ public CharDoubleHashMap(int expectedElements, double loadFactor) { this.loadFactor = verifyLoadFactor(loadFactor); iterationSeed = HashContainers.nextIterationSeed(); ensureCapacity(expectedElements); } /** Create a hash map from all key-value pairs of another container. */ public CharDoubleHashMap(CharDoubleAssociativeContainer container) { this(container.size()); putAll(container); } /** {@inheritDoc} */ @Override public double put(char key, double value) { assert assigned < mask + 1; final int mask = this.mask; if (((key) == 0)) { double previousValue = hasEmptyKey ? values[mask + 1] : 0d; hasEmptyKey = true; values[mask + 1] = value; return previousValue; } else { final char[] keys = this.keys; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { final double previousValue = values[slot]; values[slot] = value; return previousValue; } slot = (slot + 1) & mask; } if (assigned == resizeAt) { allocateThenInsertThenRehash(slot, key, value); } else { keys[slot] = key; values[slot] = value; } assigned++; return 0d; } } /** {@inheritDoc} */ @Override public int putAll(CharDoubleAssociativeContainer container) { final int count = size(); for (CharDoubleCursor c : container) { put(c.key, c.value); } return size() - count; } /** Puts all key/value pairs from a given iterable into this map. */ @Override public int putAll(Iterable iterable) { final int count = size(); for (CharDoubleCursor c : iterable) { put(c.key, c.value); } return size() - count; } /** * If key exists, putValue is inserted into the map, otherwise any * existing value is incremented by additionValue. * * @param key The key of the value to adjust. * @param putValue The value to put if key does not exist. * @param incrementValue The value to add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public double putOrAdd(char key, double putValue, double incrementValue) { assert assigned < mask + 1; int keyIndex = indexOf(key); if (indexExists(keyIndex)) { putValue = ((double) ((values[keyIndex]) + (incrementValue))); indexReplace(keyIndex, putValue); } else { indexInsert(keyIndex, key, putValue); } return putValue; } /** * Adds incrementValue to any existing value for the given key or * inserts incrementValue if key did not previously exist. * * @param key The key of the value to adjust. * @param incrementValue The value to put or add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public double addTo(char key, double incrementValue) { return putOrAdd(key, incrementValue, incrementValue); } /** {@inheritDoc} */ @Override public double remove(char key) { final int mask = this.mask; if (((key) == 0)) { if (!hasEmptyKey) { return 0d; } hasEmptyKey = false; double previousValue = values[mask + 1]; values[mask + 1] = 0d; return previousValue; } else { final char[] keys = this.keys; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { final double previousValue = values[slot]; shiftConflictingKeys(slot); return previousValue; } slot = (slot + 1) & mask; } return 0d; } } /** {@inheritDoc} */ @Override public int removeAll(CharContainer other) { final int before = size(); // Try to iterate over the smaller set of values or // over the container that isn't implementing // efficient contains() lookup. if (other.size() >= size() && other instanceof CharLookupContainer) { if (hasEmptyKey && other.contains(((char) 0))) { hasEmptyKey = false; values[mask + 1] = 0d; } final char[] keys = this.keys; for (int slot = 0, max = this.mask; slot <= max; ) { char existing; if (!((existing = keys[slot]) == 0) && other.contains(existing)) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } } else { for (CharCursor c : other) { remove(c.value); } } return before - size(); } /** {@inheritDoc} */ @Override public int removeAll(CharDoublePredicate predicate) { final int before = size(); final int mask = this.mask; if (hasEmptyKey) { if (predicate.apply(((char) 0), values[mask + 1])) { hasEmptyKey = false; values[mask + 1] = 0d; } } final char[] keys = this.keys; final double[] values = this.values; for (int slot = 0; slot <= mask; ) { char existing; if (!((existing = keys[slot]) == 0) && predicate.apply(existing, values[slot])) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } return before - size(); } /** {@inheritDoc} */ @Override public int removeAll(CharPredicate predicate) { final int before = size(); if (hasEmptyKey) { if (predicate.apply(((char) 0))) { hasEmptyKey = false; values[mask + 1] = 0d; } } final char[] keys = this.keys; for (int slot = 0, max = this.mask; slot <= max; ) { char existing; if (!((existing = keys[slot]) == 0) && predicate.apply(existing)) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } return before - size(); } /** {@inheritDoc} */ @Override public double get(char key) { if (((key) == 0)) { return hasEmptyKey ? values[mask + 1] : 0d; } else { final char[] keys = this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { return values[slot]; } slot = (slot + 1) & mask; } return 0d; } } /** {@inheritDoc} */ @Override public double getOrDefault(char key, double defaultValue) { if (((key) == 0)) { return hasEmptyKey ? values[mask + 1] : defaultValue; } else { final char[] keys = this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { return values[slot]; } slot = (slot + 1) & mask; } return defaultValue; } } /** {@inheritDoc} */ @Override public boolean containsKey(char key) { if (((key) == 0)) { return hasEmptyKey; } else { final char[] keys = this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { return true; } slot = (slot + 1) & mask; } return false; } } /** {@inheritDoc} */ @Override public int indexOf(char key) { final int mask = this.mask; if (((key) == 0)) { return hasEmptyKey ? mask + 1 : ~(mask + 1); } else { final char[] keys = this.keys; int slot = hashKey(key) & mask; char existing; while (!((existing = keys[slot]) == 0)) { if (((key) == (existing))) { return slot; } slot = (slot + 1) & mask; } return ~slot; } } /** {@inheritDoc} */ @Override public boolean indexExists(int index) { assert index < 0 || (index >= 0 && index <= mask) || (index == mask + 1 && hasEmptyKey); return index >= 0; } /** {@inheritDoc} */ @Override public double indexGet(int index) { assert index >= 0 : "The index must point at an existing key."; assert index <= mask || (index == mask + 1 && hasEmptyKey); return values[index]; } /** {@inheritDoc} */ @Override public double indexReplace(int index, double newValue) { assert index >= 0 : "The index must point at an existing key."; assert index <= mask || (index == mask + 1 && hasEmptyKey); double previousValue = values[index]; values[index] = newValue; return previousValue; } /** {@inheritDoc} */ @Override public void indexInsert(int index, char key, double value) { assert index < 0 : "The index must not point at an existing key."; index = ~index; if (((key) == 0)) { assert index == mask + 1; values[index] = value; hasEmptyKey = true; } else { assert ((keys[index]) == 0); if (assigned == resizeAt) { allocateThenInsertThenRehash(index, key, value); } else { keys[index] = key; values[index] = value; } assigned++; } } /** {@inheritDoc} */ @Override public double indexRemove(int index) { assert index >= 0 : "The index must point at an existing key."; assert index <= mask || (index == mask + 1 && hasEmptyKey); double previousValue = values[index]; if (index > mask) { assert index == mask + 1; hasEmptyKey = false; values[index] = 0d; } else { shiftConflictingKeys(index); } return previousValue; } /** {@inheritDoc} */ @Override public void clear() { assigned = 0; hasEmptyKey = false; Arrays.fill(keys, ((char) 0)); } /** {@inheritDoc} */ @Override public void release() { assigned = 0; hasEmptyKey = false; keys = null; values = null; ensureCapacity(Containers.DEFAULT_EXPECTED_ELEMENTS); } /** {@inheritDoc} */ @Override public int size() { return assigned + (hasEmptyKey ? 1 : 0); } /** {@inheritDoc} */ public boolean isEmpty() { return size() == 0; } /** {@inheritDoc} */ @Override public int hashCode() { int h = hasEmptyKey ? 0xDEADBEEF : 0; for (CharDoubleCursor c : this) { h += BitMixer.mix(c.key) + BitMixer.mix(c.value); } return h; } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { return (this == obj) || (obj != null && getClass() == obj.getClass() && equalElements(getClass().cast(obj))); } /** Return true if all keys of some other container exist in this container. */ protected boolean equalElements(CharDoubleHashMap other) { if (other.size() != size()) { return false; } for (CharDoubleCursor c : other) { char key = c.key; if (!containsKey(key) || !(Double.doubleToLongBits(c.value) == Double.doubleToLongBits(get(key)))) { return false; } } return true; } /** * Ensure this container can hold at least the given number of keys (entries) without resizing its * buffers. * * @param expectedElements The total number of keys, inclusive. */ @Override public void ensureCapacity(int expectedElements) { if (expectedElements > resizeAt || keys == null) { final char[] prevKeys = this.keys; final double[] prevValues = this.values; allocateBuffers(minBufferSize(expectedElements, loadFactor)); if (prevKeys != null && !isEmpty()) { rehash(prevKeys, prevValues); } } } @Override public long ramBytesAllocated() { // int: iterationSeed, assigned, mask, resizeAt // double: loadFactor // boolean: hasEmptyKey return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER + 4 * Integer.BYTES + Double.BYTES + 1 + RamUsageEstimator.shallowSizeOfArray(keys) + RamUsageEstimator.shallowSizeOfArray(values); } @Override public long ramBytesUsed() { // int: iterationSeed, assigned, mask, resizeAt // double: loadFactor // boolean: hasEmptyKey return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER + 4 * Integer.BYTES + Double.BYTES + 1 + RamUsageEstimator.shallowUsedSizeOfArray(keys, size()) + RamUsageEstimator.shallowUsedSizeOfArray(values, size()); } /** * Provides the next iteration seed used to build the iteration starting slot and offset * increment. This method does not need to be synchronized, what matters is that each thread gets * a sequence of varying seeds. */ protected int nextIterationSeed() { return iterationSeed = BitMixer.mixPhi(iterationSeed); } /** An iterator implementation for {@link #iterator}. */ private final class EntryIterator extends AbstractIterator { private final CharDoubleCursor cursor; private final int increment; private int index; private int slot; public EntryIterator() { cursor = new CharDoubleCursor(); int seed = nextIterationSeed(); increment = iterationIncrement(seed); slot = seed & mask; } @Override protected CharDoubleCursor fetch() { final int mask = CharDoubleHashMap.this.mask; while (index <= mask) { char existing; index++; slot = (slot + increment) & mask; if (!((existing = keys[slot]) == 0)) { cursor.index = slot; cursor.key = existing; cursor.value = values[slot]; return cursor; } } if (index == mask + 1 && hasEmptyKey) { cursor.index = index; cursor.key = ((char) 0); cursor.value = values[index++]; return cursor; } return done(); } } /** {@inheritDoc} */ @Override public Iterator iterator() { return new EntryIterator(); } /** {@inheritDoc} */ @Override public T forEach(T procedure) { final char[] keys = this.keys; final double[] values = this.values; if (hasEmptyKey) { procedure.apply(((char) 0), values[mask + 1]); } int seed = nextIterationSeed(); int inc = iterationIncrement(seed); for (int i = 0, mask = this.mask, slot = seed & mask; i <= mask; i++, slot = (slot + inc) & mask) { if (!((keys[slot]) == 0)) { procedure.apply(keys[slot], values[slot]); } } return procedure; } /** {@inheritDoc} */ @Override public T forEach(T predicate) { final char[] keys = this.keys; final double[] values = this.values; if (hasEmptyKey) { if (!predicate.apply(((char) 0), values[mask + 1])) { return predicate; } } int seed = nextIterationSeed(); int inc = iterationIncrement(seed); for (int i = 0, mask = this.mask, slot = seed & mask; i <= mask; i++, slot = (slot + inc) & mask) { if (!((keys[slot]) == 0)) { if (!predicate.apply(keys[slot], values[slot])) { break; } } } return predicate; } /** * Returns a specialized view of the keys of this associated container. The view additionally * implements {@link ObjectLookupContainer}. */ public KeysContainer keys() { return new KeysContainer(); } /** A view of the keys inside this hash map. */ public final class KeysContainer extends AbstractCharCollection implements CharLookupContainer { private final CharDoubleHashMap owner = CharDoubleHashMap.this; @Override public boolean contains(char e) { return owner.containsKey(e); } @Override public T forEach(final T procedure) { owner.forEach((CharDoubleProcedure) (k, v) -> procedure.apply(k)); return procedure; } @Override public T forEach(final T predicate) { owner.forEach((CharDoublePredicate) (key, value) -> predicate.apply(key)); return predicate; } @Override public boolean isEmpty() { return owner.isEmpty(); } @Override public Iterator iterator() { return new KeysIterator(); } @Override public int size() { return owner.size(); } @Override public void clear() { owner.clear(); } @Override public void release() { owner.release(); } @Override public int removeAll(CharPredicate predicate) { return owner.removeAll(predicate); } @Override public int removeAll(final char e) { if (owner.containsKey(e)) { owner.remove(e); return 1; } else { return 0; } } } ; /** An iterator over the set of assigned keys. */ private final class KeysIterator extends AbstractIterator { private final CharCursor cursor; private final int increment; private int index; private int slot; public KeysIterator() { cursor = new CharCursor(); int seed = nextIterationSeed(); increment = iterationIncrement(seed); slot = seed & mask; } @Override protected CharCursor fetch() { final int mask = CharDoubleHashMap.this.mask; while (index <= mask) { char existing; index++; slot = (slot + increment) & mask; if (!((existing = keys[slot]) == 0)) { cursor.index = slot; cursor.value = existing; return cursor; } } if (index == mask + 1 && hasEmptyKey) { cursor.index = index++; cursor.value = ((char) 0); return cursor; } return done(); } } /** * @return Returns a container with all values stored in this map. */ @Override public DoubleCollection values() { return new ValuesContainer(); } /** A view over the set of values of this map. */ private final class ValuesContainer extends AbstractDoubleCollection { private final CharDoubleHashMap owner = CharDoubleHashMap.this; @Override public int size() { return owner.size(); } @Override public boolean isEmpty() { return owner.isEmpty(); } @Override public boolean contains(double value) { for (CharDoubleCursor c : owner) { if ((Double.doubleToLongBits(value) == Double.doubleToLongBits(c.value))) { return true; } } return false; } @Override public T forEach(T procedure) { for (CharDoubleCursor c : owner) { procedure.apply(c.value); } return procedure; } @Override public T forEach(T predicate) { for (CharDoubleCursor c : owner) { if (!predicate.apply(c.value)) { break; } } return predicate; } @Override public Iterator iterator() { return new ValuesIterator(); } @Override public int removeAll(final double e) { return owner.removeAll( (key, value) -> (Double.doubleToLongBits(e) == Double.doubleToLongBits(value))); } @Override public int removeAll(final DoublePredicate predicate) { return owner.removeAll((key, value) -> predicate.apply(value)); } @Override public void clear() { owner.clear(); } @Override public void release() { owner.release(); } } /** An iterator over the set of assigned values. */ private final class ValuesIterator extends AbstractIterator { private final DoubleCursor cursor; private final int increment; private int index; private int slot; public ValuesIterator() { cursor = new DoubleCursor(); int seed = nextIterationSeed(); increment = iterationIncrement(seed); slot = seed & mask; } @Override protected DoubleCursor fetch() { final int mask = CharDoubleHashMap.this.mask; while (index <= mask) { index++; slot = (slot + increment) & mask; if (!((keys[slot]) == 0)) { cursor.index = slot; cursor.value = values[slot]; return cursor; } } if (index == mask + 1 && hasEmptyKey) { cursor.index = index; cursor.value = values[index++]; return cursor; } return done(); } } /** {@inheritDoc} */ @Override public CharDoubleHashMap clone() { try { CharDoubleHashMap cloned = (CharDoubleHashMap) super.clone(); cloned.keys = keys.clone(); cloned.values = values.clone(); cloned.hasEmptyKey = hasEmptyKey; cloned.iterationSeed = HashContainers.nextIterationSeed(); return cloned; } catch (CloneNotSupportedException e) { throw new RuntimeException(e); } } /** Convert the contents of this map to a human-friendly string. */ @Override public String toString() { final StringBuilder buffer = new StringBuilder(); buffer.append("["); boolean first = true; for (CharDoubleCursor cursor : this) { if (!first) { buffer.append(", "); } buffer.append(cursor.key); buffer.append("=>"); buffer.append(cursor.value); first = false; } buffer.append("]"); return buffer.toString(); } @Override public String visualizeKeyDistribution(int characters) { return CharBufferVisualizer.visualizeKeyDistribution(keys, mask, characters); } /** Creates a hash map from two index-aligned arrays of key-value pairs. */ public static CharDoubleHashMap from(char[] keys, double[] values) { if (keys.length != values.length) { throw new IllegalArgumentException( "Arrays of keys and values must have an identical length."); } CharDoubleHashMap map = new CharDoubleHashMap(keys.length); for (int i = 0; i < keys.length; i++) { map.put(keys[i], values[i]); } return map; } /** * Returns a hash code for the given key. * *

The output from this function should evenly distribute keys across the entire integer range. */ protected int hashKey(char key) { assert !((key) == 0); // Handled as a special case (empty slot marker). return BitMixer.mixPhi(key); } /** * Validate load factor range and return it. Override and suppress if you need insane load * factors. */ protected double verifyLoadFactor(double loadFactor) { checkLoadFactor(loadFactor, MIN_LOAD_FACTOR, MAX_LOAD_FACTOR); return loadFactor; } /** Rehash from old buffers to new buffers. */ protected void rehash(char[] fromKeys, double[] fromValues) { assert fromKeys.length == fromValues.length && HashContainers.checkPowerOfTwo(fromKeys.length - 1); // Rehash all stored key/value pairs into the new buffers. final char[] keys = this.keys; final double[] values = this.values; final int mask = this.mask; char existing; // Copy the zero element's slot, then rehash everything else. int from = fromKeys.length - 1; keys[keys.length - 1] = fromKeys[from]; values[values.length - 1] = fromValues[from]; while (--from >= 0) { if (!((existing = fromKeys[from]) == 0)) { int slot = hashKey(existing) & mask; while (!((keys[slot]) == 0)) { slot = (slot + 1) & mask; } keys[slot] = existing; values[slot] = fromValues[from]; } } } /** * Allocate new internal buffers. This method attempts to allocate and assign internal buffers * atomically (either allocations succeed or not). */ protected void allocateBuffers(int arraySize) { assert Integer.bitCount(arraySize) == 1; // Ensure no change is done if we hit an OOM. char[] prevKeys = this.keys; double[] prevValues = this.values; try { int emptyElementSlot = 1; this.keys = (new char[arraySize + emptyElementSlot]); this.values = (new double[arraySize + emptyElementSlot]); } catch (OutOfMemoryError e) { this.keys = prevKeys; this.values = prevValues; throw new BufferAllocationException( "Not enough memory to allocate buffers for rehashing: %,d -> %,d", e, this.mask + 1, arraySize); } this.resizeAt = expandAtCount(arraySize, loadFactor); this.mask = arraySize - 1; } /** * This method is invoked when there is a new key/ value pair to be inserted into the buffers but * there is not enough empty slots to do so. * *

New buffers are allocated. If this succeeds, we know we can proceed with rehashing so we * assign the pending element to the previous buffer (possibly violating the invariant of having * at least one empty slot) and rehash all keys, substituting new buffers at the end. */ protected void allocateThenInsertThenRehash(int slot, char pendingKey, double pendingValue) { assert assigned == resizeAt && ((keys[slot]) == 0) && !((pendingKey) == 0); // Try to allocate new buffers first. If we OOM, we leave in a consistent state. final char[] prevKeys = this.keys; final double[] prevValues = this.values; allocateBuffers(nextBufferSize(mask + 1, size(), loadFactor)); assert this.keys.length > prevKeys.length; // We have succeeded at allocating new data so insert the pending key/value at // the free slot in the old arrays before rehashing. prevKeys[slot] = pendingKey; prevValues[slot] = pendingValue; // Rehash old keys, including the pending key. rehash(prevKeys, prevValues); } /** * Shift all the slot-conflicting keys and values allocated to (and including) slot. */ protected void shiftConflictingKeys(int gapSlot) { final char[] keys = this.keys; final double[] values = this.values; final int mask = this.mask; // Perform shifts of conflicting keys to fill in the gap. int distance = 0; while (true) { final int slot = (gapSlot + (++distance)) & mask; final char existing = keys[slot]; if (((existing) == 0)) { break; } final int idealSlot = hashKey(existing); final int shift = (slot - idealSlot) & mask; if (shift >= distance) { // Entry at this position was originally at or before the gap slot. // Move the conflict-shifted entry to the gap's position and repeat the procedure // for any entries to the right of the current position, treating it // as the new gap. keys[gapSlot] = existing; values[gapSlot] = values[slot]; gapSlot = slot; distance = 0; } } // Mark the last found gap slot without a conflict as empty. keys[gapSlot] = ((char) 0); values[gapSlot] = 0d; assigned--; } }