long
to double
, implemented using open addressing with
* linear probing for collision resolution.
*
* @see HPPC interfaces diagram
*/
@com.carrotsearch.hppc.Generated(
date = "2024-06-04T15:20:17+0200",
value = "KTypeVTypeHashMap.java")
public class LongDoubleHashMap implements LongDoubleMap, Preallocable, Cloneable, Accountable {
/** The array holding keys. */
public long[] keys;
/** The array holding values. */
public double[] values;
/**
* The number of stored keys (assigned key slots), excluding the special "empty" key, if any (use
* {@link #size()} instead).
*
* @see #size()
*/
protected int assigned;
/** Mask for slot scans in {@link #keys}. */
protected int mask;
/** Expand (rehash) {@link #keys} when {@link #assigned} hits this value. */
protected int resizeAt;
/** Special treatment for the "empty slot" key marker. */
protected boolean hasEmptyKey;
/** The load factor for {@link #keys}. */
protected double loadFactor;
/** Seed used to ensure the hash iteration order is different from an iteration to another. */
protected int iterationSeed;
/** New instance with sane defaults. */
public LongDoubleHashMap() {
this(DEFAULT_EXPECTED_ELEMENTS);
}
/**
* New instance with sane defaults.
*
* @param expectedElements The expected number of elements guaranteed not to cause buffer
* expansion (inclusive).
*/
public LongDoubleHashMap(int expectedElements) {
this(expectedElements, DEFAULT_LOAD_FACTOR);
}
/**
* New instance with the provided defaults.
*
* @param expectedElements The expected number of elements guaranteed not to cause a rehash
* (inclusive).
* @param loadFactor The load factor for internal buffers. Insane load factors (zero, full
* capacity) are rejected by {@link #verifyLoadFactor(double)}.
*/
public LongDoubleHashMap(int expectedElements, double loadFactor) {
this.loadFactor = verifyLoadFactor(loadFactor);
iterationSeed = HashContainers.nextIterationSeed();
ensureCapacity(expectedElements);
}
/** Create a hash map from all key-value pairs of another container. */
public LongDoubleHashMap(LongDoubleAssociativeContainer container) {
this(container.size());
putAll(container);
}
/** {@inheritDoc} */
@Override
public double put(long key, double value) {
assert assigned < mask + 1;
final int mask = this.mask;
if (((key) == 0)) {
double previousValue = hasEmptyKey ? values[mask + 1] : 0d;
hasEmptyKey = true;
values[mask + 1] = value;
return previousValue;
} else {
final long[] keys = this.keys;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
final double previousValue = values[slot];
values[slot] = value;
return previousValue;
}
slot = (slot + 1) & mask;
}
if (assigned == resizeAt) {
allocateThenInsertThenRehash(slot, key, value);
} else {
keys[slot] = key;
values[slot] = value;
}
assigned++;
return 0d;
}
}
/** {@inheritDoc} */
@Override
public int putAll(LongDoubleAssociativeContainer container) {
final int count = size();
for (LongDoubleCursor c : container) {
put(c.key, c.value);
}
return size() - count;
}
/** Puts all key/value pairs from a given iterable into this map. */
@Override
public int putAll(Iterable extends LongDoubleCursor> iterable) {
final int count = size();
for (LongDoubleCursor c : iterable) {
put(c.key, c.value);
}
return size() - count;
}
/**
* If key
exists, putValue
is inserted into the map, otherwise any
* existing value is incremented by additionValue
.
*
* @param key The key of the value to adjust.
* @param putValue The value to put if key
does not exist.
* @param incrementValue The value to add to the existing value if key
exists.
* @return Returns the current value associated with key
(after changes).
*/
@Override
public double putOrAdd(long key, double putValue, double incrementValue) {
assert assigned < mask + 1;
int keyIndex = indexOf(key);
if (indexExists(keyIndex)) {
putValue = ((double) ((values[keyIndex]) + (incrementValue)));
indexReplace(keyIndex, putValue);
} else {
indexInsert(keyIndex, key, putValue);
}
return putValue;
}
/**
* Adds incrementValue
to any existing value for the given key
or
* inserts incrementValue
if key
did not previously exist.
*
* @param key The key of the value to adjust.
* @param incrementValue The value to put or add to the existing value if key
exists.
* @return Returns the current value associated with key
(after changes).
*/
@Override
public double addTo(long key, double incrementValue) {
return putOrAdd(key, incrementValue, incrementValue);
}
/** {@inheritDoc} */
@Override
public double remove(long key) {
final int mask = this.mask;
if (((key) == 0)) {
if (!hasEmptyKey) {
return 0d;
}
hasEmptyKey = false;
double previousValue = values[mask + 1];
values[mask + 1] = 0d;
return previousValue;
} else {
final long[] keys = this.keys;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
final double previousValue = values[slot];
shiftConflictingKeys(slot);
return previousValue;
}
slot = (slot + 1) & mask;
}
return 0d;
}
}
/** {@inheritDoc} */
@Override
public int removeAll(LongContainer other) {
final int before = size();
// Try to iterate over the smaller set of values or
// over the container that isn't implementing
// efficient contains() lookup.
if (other.size() >= size() && other instanceof LongLookupContainer) {
if (hasEmptyKey && other.contains(0L)) {
hasEmptyKey = false;
values[mask + 1] = 0d;
}
final long[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; ) {
long existing;
if (!((existing = keys[slot]) == 0) && other.contains(existing)) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
} else {
for (LongCursor c : other) {
remove(c.value);
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public int removeAll(LongDoublePredicate predicate) {
final int before = size();
final int mask = this.mask;
if (hasEmptyKey) {
if (predicate.apply(0L, values[mask + 1])) {
hasEmptyKey = false;
values[mask + 1] = 0d;
}
}
final long[] keys = this.keys;
final double[] values = this.values;
for (int slot = 0; slot <= mask; ) {
long existing;
if (!((existing = keys[slot]) == 0) && predicate.apply(existing, values[slot])) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public int removeAll(LongPredicate predicate) {
final int before = size();
if (hasEmptyKey) {
if (predicate.apply(0L)) {
hasEmptyKey = false;
values[mask + 1] = 0d;
}
}
final long[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; ) {
long existing;
if (!((existing = keys[slot]) == 0) && predicate.apply(existing)) {
// Shift, do not increment slot.
shiftConflictingKeys(slot);
} else {
slot++;
}
}
return before - size();
}
/** {@inheritDoc} */
@Override
public double get(long key) {
if (((key) == 0)) {
return hasEmptyKey ? values[mask + 1] : 0d;
} else {
final long[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return values[slot];
}
slot = (slot + 1) & mask;
}
return 0d;
}
}
/** {@inheritDoc} */
@Override
public double getOrDefault(long key, double defaultValue) {
if (((key) == 0)) {
return hasEmptyKey ? values[mask + 1] : defaultValue;
} else {
final long[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return values[slot];
}
slot = (slot + 1) & mask;
}
return defaultValue;
}
}
/** {@inheritDoc} */
@Override
public boolean containsKey(long key) {
if (((key) == 0)) {
return hasEmptyKey;
} else {
final long[] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return true;
}
slot = (slot + 1) & mask;
}
return false;
}
}
/** {@inheritDoc} */
@Override
public int indexOf(long key) {
final int mask = this.mask;
if (((key) == 0)) {
return hasEmptyKey ? mask + 1 : ~(mask + 1);
} else {
final long[] keys = this.keys;
int slot = hashKey(key) & mask;
long existing;
while (!((existing = keys[slot]) == 0)) {
if (((key) == (existing))) {
return slot;
}
slot = (slot + 1) & mask;
}
return ~slot;
}
}
/** {@inheritDoc} */
@Override
public boolean indexExists(int index) {
assert index < 0 || (index >= 0 && index <= mask) || (index == mask + 1 && hasEmptyKey);
return index >= 0;
}
/** {@inheritDoc} */
@Override
public double indexGet(int index) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
return values[index];
}
/** {@inheritDoc} */
@Override
public double indexReplace(int index, double newValue) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
double previousValue = values[index];
values[index] = newValue;
return previousValue;
}
/** {@inheritDoc} */
@Override
public void indexInsert(int index, long key, double value) {
assert index < 0 : "The index must not point at an existing key.";
index = ~index;
if (((key) == 0)) {
assert index == mask + 1;
values[index] = value;
hasEmptyKey = true;
} else {
assert ((keys[index]) == 0);
if (assigned == resizeAt) {
allocateThenInsertThenRehash(index, key, value);
} else {
keys[index] = key;
values[index] = value;
}
assigned++;
}
}
/** {@inheritDoc} */
@Override
public double indexRemove(int index) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask || (index == mask + 1 && hasEmptyKey);
double previousValue = values[index];
if (index > mask) {
assert index == mask + 1;
hasEmptyKey = false;
values[index] = 0d;
} else {
shiftConflictingKeys(index);
}
return previousValue;
}
/** {@inheritDoc} */
@Override
public void clear() {
assigned = 0;
hasEmptyKey = false;
Arrays.fill(keys, 0L);
}
/** {@inheritDoc} */
@Override
public void release() {
assigned = 0;
hasEmptyKey = false;
keys = null;
values = null;
ensureCapacity(Containers.DEFAULT_EXPECTED_ELEMENTS);
}
/** {@inheritDoc} */
@Override
public int size() {
return assigned + (hasEmptyKey ? 1 : 0);
}
/** {@inheritDoc} */
public boolean isEmpty() {
return size() == 0;
}
/** {@inheritDoc} */
@Override
public int hashCode() {
int h = hasEmptyKey ? 0xDEADBEEF : 0;
for (LongDoubleCursor c : this) {
h += BitMixer.mix(c.key) + BitMixer.mix(c.value);
}
return h;
}
/** {@inheritDoc} */
@Override
public boolean equals(Object obj) {
return (this == obj)
|| (obj != null && getClass() == obj.getClass() && equalElements(getClass().cast(obj)));
}
/** Return true if all keys of some other container exist in this container. */
protected boolean equalElements(LongDoubleHashMap other) {
if (other.size() != size()) {
return false;
}
for (LongDoubleCursor c : other) {
long key = c.key;
if (!containsKey(key)
|| !(Double.doubleToLongBits(c.value) == Double.doubleToLongBits(get(key)))) {
return false;
}
}
return true;
}
/**
* Ensure this container can hold at least the given number of keys (entries) without resizing its
* buffers.
*
* @param expectedElements The total number of keys, inclusive.
*/
@Override
public void ensureCapacity(int expectedElements) {
if (expectedElements > resizeAt || keys == null) {
final long[] prevKeys = this.keys;
final double[] prevValues = this.values;
allocateBuffers(minBufferSize(expectedElements, loadFactor));
if (prevKeys != null && !isEmpty()) {
rehash(prevKeys, prevValues);
}
}
}
@Override
public long ramBytesAllocated() {
// int: iterationSeed, assigned, mask, resizeAt
// double: loadFactor
// boolean: hasEmptyKey
return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER
+ 4 * Integer.BYTES
+ Double.BYTES
+ 1
+ RamUsageEstimator.shallowSizeOfArray(keys)
+ RamUsageEstimator.shallowSizeOfArray(values);
}
@Override
public long ramBytesUsed() {
// int: iterationSeed, assigned, mask, resizeAt
// double: loadFactor
// boolean: hasEmptyKey
return RamUsageEstimator.NUM_BYTES_OBJECT_HEADER
+ 4 * Integer.BYTES
+ Double.BYTES
+ 1
+ RamUsageEstimator.shallowUsedSizeOfArray(keys, size())
+ RamUsageEstimator.shallowUsedSizeOfArray(values, size());
}
/**
* Provides the next iteration seed used to build the iteration starting slot and offset
* increment. This method does not need to be synchronized, what matters is that each thread gets
* a sequence of varying seeds.
*/
protected int nextIterationSeed() {
return iterationSeed = BitMixer.mixPhi(iterationSeed);
}
/** An iterator implementation for {@link #iterator}. */
private final class EntryIterator extends AbstractIteratorThe output from this function should evenly distribute keys across the entire integer range. */ protected int hashKey(long key) { assert !((key) == 0); // Handled as a special case (empty slot marker). return BitMixer.mixPhi(key); } /** * Validate load factor range and return it. Override and suppress if you need insane load * factors. */ protected double verifyLoadFactor(double loadFactor) { checkLoadFactor(loadFactor, MIN_LOAD_FACTOR, MAX_LOAD_FACTOR); return loadFactor; } /** Rehash from old buffers to new buffers. */ protected void rehash(long[] fromKeys, double[] fromValues) { assert fromKeys.length == fromValues.length && HashContainers.checkPowerOfTwo(fromKeys.length - 1); // Rehash all stored key/value pairs into the new buffers. final long[] keys = this.keys; final double[] values = this.values; final int mask = this.mask; long existing; // Copy the zero element's slot, then rehash everything else. int from = fromKeys.length - 1; keys[keys.length - 1] = fromKeys[from]; values[values.length - 1] = fromValues[from]; while (--from >= 0) { if (!((existing = fromKeys[from]) == 0)) { int slot = hashKey(existing) & mask; while (!((keys[slot]) == 0)) { slot = (slot + 1) & mask; } keys[slot] = existing; values[slot] = fromValues[from]; } } } /** * Allocate new internal buffers. This method attempts to allocate and assign internal buffers * atomically (either allocations succeed or not). */ protected void allocateBuffers(int arraySize) { assert Integer.bitCount(arraySize) == 1; // Ensure no change is done if we hit an OOM. long[] prevKeys = this.keys; double[] prevValues = this.values; try { int emptyElementSlot = 1; this.keys = (new long[arraySize + emptyElementSlot]); this.values = (new double[arraySize + emptyElementSlot]); } catch (OutOfMemoryError e) { this.keys = prevKeys; this.values = prevValues; throw new BufferAllocationException( "Not enough memory to allocate buffers for rehashing: %,d -> %,d", e, this.mask + 1, arraySize); } this.resizeAt = expandAtCount(arraySize, loadFactor); this.mask = arraySize - 1; } /** * This method is invoked when there is a new key/ value pair to be inserted into the buffers but * there is not enough empty slots to do so. * *
New buffers are allocated. If this succeeds, we know we can proceed with rehashing so we
* assign the pending element to the previous buffer (possibly violating the invariant of having
* at least one empty slot) and rehash all keys, substituting new buffers at the end.
*/
protected void allocateThenInsertThenRehash(int slot, long pendingKey, double pendingValue) {
assert assigned == resizeAt && ((keys[slot]) == 0) && !((pendingKey) == 0);
// Try to allocate new buffers first. If we OOM, we leave in a consistent state.
final long[] prevKeys = this.keys;
final double[] prevValues = this.values;
allocateBuffers(nextBufferSize(mask + 1, size(), loadFactor));
assert this.keys.length > prevKeys.length;
// We have succeeded at allocating new data so insert the pending key/value at
// the free slot in the old arrays before rehashing.
prevKeys[slot] = pendingKey;
prevValues[slot] = pendingValue;
// Rehash old keys, including the pending key.
rehash(prevKeys, prevValues);
}
/**
* Shift all the slot-conflicting keys and values allocated to (and including) slot
.
*/
protected void shiftConflictingKeys(int gapSlot) {
final long[] keys = this.keys;
final double[] values = this.values;
final int mask = this.mask;
// Perform shifts of conflicting keys to fill in the gap.
int distance = 0;
while (true) {
final int slot = (gapSlot + (++distance)) & mask;
final long existing = keys[slot];
if (((existing) == 0)) {
break;
}
final int idealSlot = hashKey(existing);
final int shift = (slot - idealSlot) & mask;
if (shift >= distance) {
// Entry at this position was originally at or before the gap slot.
// Move the conflict-shifted entry to the gap's position and repeat the procedure
// for any entries to the right of the current position, treating it
// as the new gap.
keys[gapSlot] = existing;
values[gapSlot] = values[slot];
gapSlot = slot;
distance = 0;
}
}
// Mark the last found gap slot without a conflict as empty.
keys[gapSlot] = 0L;
values[gapSlot] = 0d;
assigned--;
}
}