Update #37 - Touch support without userscript, many other feats

This commit is contained in:
lax1dude
2024-09-21 20:17:42 -07:00
parent 173727c8c4
commit ec1ab8ece3
683 changed files with 62074 additions and 8996 deletions

View File

@ -0,0 +1,527 @@
/*
* Copyright (c) 2000-2021 The Legion of the Bouncy Castle Inc. (https://www.bouncycastle.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
package net.lax1dude.eaglercraft.v1_8.crypto;
/**
* an implementation of the AES (Rijndael), from FIPS-197.
* <p>
* For further details see: <a href="https://csrc.nist.gov/encryption/aes/">https://csrc.nist.gov/encryption/aes/</a>.
*
* This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at
* <a href="https://fp.gladman.plus.com/cryptography_technology/rijndael/">https://fp.gladman.plus.com/cryptography_technology/rijndael/</a>
*
* There are three levels of tradeoff of speed vs memory
* Because java has no preprocessor, they are written as three separate classes from which to choose
*
* The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption
* and 4 for decryption.
*
* The middle performance version uses only one 256 word table for each, for a total of 2Kbytes,
* adding 12 rotate operations per round to compute the values contained in the other tables from
* the contents of the first
*
* The slowest version uses no static tables at all and computes the values
* in each round.
* <p>
* This file contains the slowest performance version with no static tables
* for round precomputation, but it has the smallest foot print.
*
*/
public class AESLightEngine {
// The S box
private static final byte[] S = { (byte) 99, (byte) 124, (byte) 119, (byte) 123, (byte) 242, (byte) 107, (byte) 111,
(byte) 197, (byte) 48, (byte) 1, (byte) 103, (byte) 43, (byte) 254, (byte) 215, (byte) 171, (byte) 118,
(byte) 202, (byte) 130, (byte) 201, (byte) 125, (byte) 250, (byte) 89, (byte) 71, (byte) 240, (byte) 173,
(byte) 212, (byte) 162, (byte) 175, (byte) 156, (byte) 164, (byte) 114, (byte) 192, (byte) 183, (byte) 253,
(byte) 147, (byte) 38, (byte) 54, (byte) 63, (byte) 247, (byte) 204, (byte) 52, (byte) 165, (byte) 229,
(byte) 241, (byte) 113, (byte) 216, (byte) 49, (byte) 21, (byte) 4, (byte) 199, (byte) 35, (byte) 195,
(byte) 24, (byte) 150, (byte) 5, (byte) 154, (byte) 7, (byte) 18, (byte) 128, (byte) 226, (byte) 235,
(byte) 39, (byte) 178, (byte) 117, (byte) 9, (byte) 131, (byte) 44, (byte) 26, (byte) 27, (byte) 110,
(byte) 90, (byte) 160, (byte) 82, (byte) 59, (byte) 214, (byte) 179, (byte) 41, (byte) 227, (byte) 47,
(byte) 132, (byte) 83, (byte) 209, (byte) 0, (byte) 237, (byte) 32, (byte) 252, (byte) 177, (byte) 91,
(byte) 106, (byte) 203, (byte) 190, (byte) 57, (byte) 74, (byte) 76, (byte) 88, (byte) 207, (byte) 208,
(byte) 239, (byte) 170, (byte) 251, (byte) 67, (byte) 77, (byte) 51, (byte) 133, (byte) 69, (byte) 249,
(byte) 2, (byte) 127, (byte) 80, (byte) 60, (byte) 159, (byte) 168, (byte) 81, (byte) 163, (byte) 64,
(byte) 143, (byte) 146, (byte) 157, (byte) 56, (byte) 245, (byte) 188, (byte) 182, (byte) 218, (byte) 33,
(byte) 16, (byte) 255, (byte) 243, (byte) 210, (byte) 205, (byte) 12, (byte) 19, (byte) 236, (byte) 95,
(byte) 151, (byte) 68, (byte) 23, (byte) 196, (byte) 167, (byte) 126, (byte) 61, (byte) 100, (byte) 93,
(byte) 25, (byte) 115, (byte) 96, (byte) 129, (byte) 79, (byte) 220, (byte) 34, (byte) 42, (byte) 144,
(byte) 136, (byte) 70, (byte) 238, (byte) 184, (byte) 20, (byte) 222, (byte) 94, (byte) 11, (byte) 219,
(byte) 224, (byte) 50, (byte) 58, (byte) 10, (byte) 73, (byte) 6, (byte) 36, (byte) 92, (byte) 194,
(byte) 211, (byte) 172, (byte) 98, (byte) 145, (byte) 149, (byte) 228, (byte) 121, (byte) 231, (byte) 200,
(byte) 55, (byte) 109, (byte) 141, (byte) 213, (byte) 78, (byte) 169, (byte) 108, (byte) 86, (byte) 244,
(byte) 234, (byte) 101, (byte) 122, (byte) 174, (byte) 8, (byte) 186, (byte) 120, (byte) 37, (byte) 46,
(byte) 28, (byte) 166, (byte) 180, (byte) 198, (byte) 232, (byte) 221, (byte) 116, (byte) 31, (byte) 75,
(byte) 189, (byte) 139, (byte) 138, (byte) 112, (byte) 62, (byte) 181, (byte) 102, (byte) 72, (byte) 3,
(byte) 246, (byte) 14, (byte) 97, (byte) 53, (byte) 87, (byte) 185, (byte) 134, (byte) 193, (byte) 29,
(byte) 158, (byte) 225, (byte) 248, (byte) 152, (byte) 17, (byte) 105, (byte) 217, (byte) 142, (byte) 148,
(byte) 155, (byte) 30, (byte) 135, (byte) 233, (byte) 206, (byte) 85, (byte) 40, (byte) 223, (byte) 140,
(byte) 161, (byte) 137, (byte) 13, (byte) 191, (byte) 230, (byte) 66, (byte) 104, (byte) 65, (byte) 153,
(byte) 45, (byte) 15, (byte) 176, (byte) 84, (byte) 187, (byte) 22, };
// The inverse S-box
private static final byte[] Si = { (byte) 82, (byte) 9, (byte) 106, (byte) 213, (byte) 48, (byte) 54, (byte) 165,
(byte) 56, (byte) 191, (byte) 64, (byte) 163, (byte) 158, (byte) 129, (byte) 243, (byte) 215, (byte) 251,
(byte) 124, (byte) 227, (byte) 57, (byte) 130, (byte) 155, (byte) 47, (byte) 255, (byte) 135, (byte) 52,
(byte) 142, (byte) 67, (byte) 68, (byte) 196, (byte) 222, (byte) 233, (byte) 203, (byte) 84, (byte) 123,
(byte) 148, (byte) 50, (byte) 166, (byte) 194, (byte) 35, (byte) 61, (byte) 238, (byte) 76, (byte) 149,
(byte) 11, (byte) 66, (byte) 250, (byte) 195, (byte) 78, (byte) 8, (byte) 46, (byte) 161, (byte) 102,
(byte) 40, (byte) 217, (byte) 36, (byte) 178, (byte) 118, (byte) 91, (byte) 162, (byte) 73, (byte) 109,
(byte) 139, (byte) 209, (byte) 37, (byte) 114, (byte) 248, (byte) 246, (byte) 100, (byte) 134, (byte) 104,
(byte) 152, (byte) 22, (byte) 212, (byte) 164, (byte) 92, (byte) 204, (byte) 93, (byte) 101, (byte) 182,
(byte) 146, (byte) 108, (byte) 112, (byte) 72, (byte) 80, (byte) 253, (byte) 237, (byte) 185, (byte) 218,
(byte) 94, (byte) 21, (byte) 70, (byte) 87, (byte) 167, (byte) 141, (byte) 157, (byte) 132, (byte) 144,
(byte) 216, (byte) 171, (byte) 0, (byte) 140, (byte) 188, (byte) 211, (byte) 10, (byte) 247, (byte) 228,
(byte) 88, (byte) 5, (byte) 184, (byte) 179, (byte) 69, (byte) 6, (byte) 208, (byte) 44, (byte) 30,
(byte) 143, (byte) 202, (byte) 63, (byte) 15, (byte) 2, (byte) 193, (byte) 175, (byte) 189, (byte) 3,
(byte) 1, (byte) 19, (byte) 138, (byte) 107, (byte) 58, (byte) 145, (byte) 17, (byte) 65, (byte) 79,
(byte) 103, (byte) 220, (byte) 234, (byte) 151, (byte) 242, (byte) 207, (byte) 206, (byte) 240, (byte) 180,
(byte) 230, (byte) 115, (byte) 150, (byte) 172, (byte) 116, (byte) 34, (byte) 231, (byte) 173, (byte) 53,
(byte) 133, (byte) 226, (byte) 249, (byte) 55, (byte) 232, (byte) 28, (byte) 117, (byte) 223, (byte) 110,
(byte) 71, (byte) 241, (byte) 26, (byte) 113, (byte) 29, (byte) 41, (byte) 197, (byte) 137, (byte) 111,
(byte) 183, (byte) 98, (byte) 14, (byte) 170, (byte) 24, (byte) 190, (byte) 27, (byte) 252, (byte) 86,
(byte) 62, (byte) 75, (byte) 198, (byte) 210, (byte) 121, (byte) 32, (byte) 154, (byte) 219, (byte) 192,
(byte) 254, (byte) 120, (byte) 205, (byte) 90, (byte) 244, (byte) 31, (byte) 221, (byte) 168, (byte) 51,
(byte) 136, (byte) 7, (byte) 199, (byte) 49, (byte) 177, (byte) 18, (byte) 16, (byte) 89, (byte) 39,
(byte) 128, (byte) 236, (byte) 95, (byte) 96, (byte) 81, (byte) 127, (byte) 169, (byte) 25, (byte) 181,
(byte) 74, (byte) 13, (byte) 45, (byte) 229, (byte) 122, (byte) 159, (byte) 147, (byte) 201, (byte) 156,
(byte) 239, (byte) 160, (byte) 224, (byte) 59, (byte) 77, (byte) 174, (byte) 42, (byte) 245, (byte) 176,
(byte) 200, (byte) 235, (byte) 187, (byte) 60, (byte) 131, (byte) 83, (byte) 153, (byte) 97, (byte) 23,
(byte) 43, (byte) 4, (byte) 126, (byte) 186, (byte) 119, (byte) 214, (byte) 38, (byte) 225, (byte) 105,
(byte) 20, (byte) 99, (byte) 85, (byte) 33, (byte) 12, (byte) 125, };
// vector used in calculating key schedule (powers of x in GF(256))
private static final int[] rcon = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab,
0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 };
private static int shift(int r, int shift) {
return (r >>> shift) | (r << -shift);
}
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
private static final int m1 = 0x80808080;
private static final int m2 = 0x7f7f7f7f;
private static final int m3 = 0x0000001b;
private static final int m4 = 0xC0C0C0C0;
private static final int m5 = 0x3f3f3f3f;
private static int FFmulX(int x) {
return (((x & m2) << 1) ^ (((x & m1) >>> 7) * m3));
}
private static int FFmulX2(int x) {
int t0 = (x & m5) << 2;
int t1 = (x & m4);
t1 ^= (t1 >>> 1);
return t0 ^ (t1 >>> 2) ^ (t1 >>> 5);
}
/*
The following defines provide alternative definitions of FFmulX that might
give improved performance if a fast 32-bit multiply is not available.
private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); }
private static final int m4 = 0x1b1b1b1b;
private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); }
*/
private static int mcol(int x) {
int t0, t1;
t0 = shift(x, 8);
t1 = x ^ t0;
return shift(t1, 16) ^ t0 ^ FFmulX(t1);
}
private static int inv_mcol(int x) {
int t0, t1;
t0 = x;
t1 = t0 ^ shift(t0, 8);
t0 ^= FFmulX(t1);
t1 ^= FFmulX2(t0);
t0 ^= t1 ^ shift(t1, 16);
return t0;
}
private static int subWord(int x) {
return (S[x & 255] & 255 | ((S[(x >> 8) & 255] & 255) << 8) | ((S[(x >> 16) & 255] & 255) << 16)
| S[(x >> 24) & 255] << 24);
}
private static int littleEndianToInt(byte[] bs, int off) {
int n = bs[off] & 0xff;
n |= (bs[++off] & 0xff) << 8;
n |= (bs[++off] & 0xff) << 16;
n |= bs[++off] << 24;
return n;
}
public static void intToLittleEndian(int n, byte[] bs, int off) {
bs[off] = (byte) (n);
bs[++off] = (byte) (n >>> 8);
bs[++off] = (byte) (n >>> 16);
bs[++off] = (byte) (n >>> 24);
}
/**
* Calculate the necessary round keys
* The number of calculations depends on key size and block size
* AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits
* This code is written assuming those are the only possible values
*/
private int[][] generateWorkingKey(byte[] key, boolean forEncryption) {
int keyLen = key.length;
if (keyLen < 16 || keyLen > 32 || (keyLen & 7) != 0) {
throw new IllegalArgumentException("Key length not 128/192/256 bits.");
}
int KC = keyLen >>> 2;
ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block
// sizes
int[][] W = new int[ROUNDS + 1][4]; // 4 words in a block
switch (KC) {
case 4: {
int col0 = littleEndianToInt(key, 0);
W[0][0] = col0;
int col1 = littleEndianToInt(key, 4);
W[0][1] = col1;
int col2 = littleEndianToInt(key, 8);
W[0][2] = col2;
int col3 = littleEndianToInt(key, 12);
W[0][3] = col3;
for (int i = 1; i <= 10; ++i) {
int colx = subWord(shift(col3, 8)) ^ rcon[i - 1];
col0 ^= colx;
W[i][0] = col0;
col1 ^= col0;
W[i][1] = col1;
col2 ^= col1;
W[i][2] = col2;
col3 ^= col2;
W[i][3] = col3;
}
break;
}
case 6: {
int col0 = littleEndianToInt(key, 0);
W[0][0] = col0;
int col1 = littleEndianToInt(key, 4);
W[0][1] = col1;
int col2 = littleEndianToInt(key, 8);
W[0][2] = col2;
int col3 = littleEndianToInt(key, 12);
W[0][3] = col3;
int col4 = littleEndianToInt(key, 16);
int col5 = littleEndianToInt(key, 20);
int i = 1, rcon = 1, colx;
for (;;) {
W[i][0] = col4;
W[i][1] = col5;
colx = subWord(shift(col5, 8)) ^ rcon;
rcon <<= 1;
col0 ^= colx;
W[i][2] = col0;
col1 ^= col0;
W[i][3] = col1;
col2 ^= col1;
W[i + 1][0] = col2;
col3 ^= col2;
W[i + 1][1] = col3;
col4 ^= col3;
W[i + 1][2] = col4;
col5 ^= col4;
W[i + 1][3] = col5;
colx = subWord(shift(col5, 8)) ^ rcon;
rcon <<= 1;
col0 ^= colx;
W[i + 2][0] = col0;
col1 ^= col0;
W[i + 2][1] = col1;
col2 ^= col1;
W[i + 2][2] = col2;
col3 ^= col2;
W[i + 2][3] = col3;
if ((i += 3) >= 13) {
break;
}
col4 ^= col3;
col5 ^= col4;
}
break;
}
case 8: {
int col0 = littleEndianToInt(key, 0);
W[0][0] = col0;
int col1 = littleEndianToInt(key, 4);
W[0][1] = col1;
int col2 = littleEndianToInt(key, 8);
W[0][2] = col2;
int col3 = littleEndianToInt(key, 12);
W[0][3] = col3;
int col4 = littleEndianToInt(key, 16);
W[1][0] = col4;
int col5 = littleEndianToInt(key, 20);
W[1][1] = col5;
int col6 = littleEndianToInt(key, 24);
W[1][2] = col6;
int col7 = littleEndianToInt(key, 28);
W[1][3] = col7;
int i = 2, rcon = 1, colx;
for (;;) {
colx = subWord(shift(col7, 8)) ^ rcon;
rcon <<= 1;
col0 ^= colx;
W[i][0] = col0;
col1 ^= col0;
W[i][1] = col1;
col2 ^= col1;
W[i][2] = col2;
col3 ^= col2;
W[i][3] = col3;
++i;
if (i >= 15) {
break;
}
colx = subWord(col3);
col4 ^= colx;
W[i][0] = col4;
col5 ^= col4;
W[i][1] = col5;
col6 ^= col5;
W[i][2] = col6;
col7 ^= col6;
W[i][3] = col7;
++i;
}
break;
}
default: {
throw new IllegalStateException("Should never get here");
}
}
if (!forEncryption) {
for (int j = 1; j < ROUNDS; j++) {
for (int i = 0; i < 4; i++) {
W[j][i] = inv_mcol(W[j][i]);
}
}
}
return W;
}
private int ROUNDS;
private int[][] WorkingKey = null;
private boolean forEncryption;
private static final int BLOCK_SIZE = 16;
/**
* default constructor - 128 bit block size.
*/
public AESLightEngine() {
}
/**
* initialise an AES cipher.
*
* @param forEncryption whether or not we are for encryption.
* @param params the parameters required to set up the cipher.
* @exception IllegalArgumentException if the params argument is
* inappropriate.
*/
public void init(boolean forEncryption, byte[] key) {
WorkingKey = generateWorkingKey(key, forEncryption);
this.forEncryption = forEncryption;
return;
}
public String getAlgorithmName() {
return "AES";
}
public int getBlockSize() {
return BLOCK_SIZE;
}
public int processBlock(byte[] in, int inOff, byte[] out, int outOff) {
if (WorkingKey == null) {
throw new IllegalStateException("AES engine not initialised");
}
if (inOff > (in.length - BLOCK_SIZE)) {
throw new IndexOutOfBoundsException("input buffer too short");
}
if (outOff > (out.length - BLOCK_SIZE)) {
throw new IndexOutOfBoundsException("output buffer too short");
}
if (forEncryption) {
encryptBlock(in, inOff, out, outOff, WorkingKey);
} else {
decryptBlock(in, inOff, out, outOff, WorkingKey);
}
return BLOCK_SIZE;
}
public void reset() {
}
private void encryptBlock(byte[] in, int inOff, byte[] out, int outOff, int[][] KW) {
int C0 = littleEndianToInt(in, inOff + 0);
int C1 = littleEndianToInt(in, inOff + 4);
int C2 = littleEndianToInt(in, inOff + 8);
int C3 = littleEndianToInt(in, inOff + 12);
int t0 = C0 ^ KW[0][0];
int t1 = C1 ^ KW[0][1];
int t2 = C2 ^ KW[0][2];
int r = 1, r0, r1, r2, r3 = C3 ^ KW[0][3];
while (r < ROUNDS - 1) {
r0 = mcol((S[t0 & 255] & 255) ^ ((S[(t1 >> 8) & 255] & 255) << 8) ^ ((S[(t2 >> 16) & 255] & 255) << 16)
^ (S[(r3 >> 24) & 255] << 24)) ^ KW[r][0];
r1 = mcol((S[t1 & 255] & 255) ^ ((S[(t2 >> 8) & 255] & 255) << 8) ^ ((S[(r3 >> 16) & 255] & 255) << 16)
^ (S[(t0 >> 24) & 255] << 24)) ^ KW[r][1];
r2 = mcol((S[t2 & 255] & 255) ^ ((S[(r3 >> 8) & 255] & 255) << 8) ^ ((S[(t0 >> 16) & 255] & 255) << 16)
^ (S[(t1 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = mcol((S[r3 & 255] & 255) ^ ((S[(t0 >> 8) & 255] & 255) << 8) ^ ((S[(t1 >> 16) & 255] & 255) << 16)
^ (S[(t2 >> 24) & 255] << 24)) ^ KW[r++][3];
t0 = mcol((S[r0 & 255] & 255) ^ ((S[(r1 >> 8) & 255] & 255) << 8) ^ ((S[(r2 >> 16) & 255] & 255) << 16)
^ (S[(r3 >> 24) & 255] << 24)) ^ KW[r][0];
t1 = mcol((S[r1 & 255] & 255) ^ ((S[(r2 >> 8) & 255] & 255) << 8) ^ ((S[(r3 >> 16) & 255] & 255) << 16)
^ (S[(r0 >> 24) & 255] << 24)) ^ KW[r][1];
t2 = mcol((S[r2 & 255] & 255) ^ ((S[(r3 >> 8) & 255] & 255) << 8) ^ ((S[(r0 >> 16) & 255] & 255) << 16)
^ (S[(r1 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = mcol((S[r3 & 255] & 255) ^ ((S[(r0 >> 8) & 255] & 255) << 8) ^ ((S[(r1 >> 16) & 255] & 255) << 16)
^ (S[(r2 >> 24) & 255] << 24)) ^ KW[r++][3];
}
r0 = mcol((S[t0 & 255] & 255) ^ ((S[(t1 >> 8) & 255] & 255) << 8) ^ ((S[(t2 >> 16) & 255] & 255) << 16)
^ (S[(r3 >> 24) & 255] << 24)) ^ KW[r][0];
r1 = mcol((S[t1 & 255] & 255) ^ ((S[(t2 >> 8) & 255] & 255) << 8) ^ ((S[(r3 >> 16) & 255] & 255) << 16)
^ (S[(t0 >> 24) & 255] << 24)) ^ KW[r][1];
r2 = mcol((S[t2 & 255] & 255) ^ ((S[(r3 >> 8) & 255] & 255) << 8) ^ ((S[(t0 >> 16) & 255] & 255) << 16)
^ (S[(t1 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = mcol((S[r3 & 255] & 255) ^ ((S[(t0 >> 8) & 255] & 255) << 8) ^ ((S[(t1 >> 16) & 255] & 255) << 16)
^ (S[(t2 >> 24) & 255] << 24)) ^ KW[r++][3];
// the final round is a simple function of S
C0 = (S[r0 & 255] & 255) ^ ((S[(r1 >> 8) & 255] & 255) << 8) ^ ((S[(r2 >> 16) & 255] & 255) << 16)
^ (S[(r3 >> 24) & 255] << 24) ^ KW[r][0];
C1 = (S[r1 & 255] & 255) ^ ((S[(r2 >> 8) & 255] & 255) << 8) ^ ((S[(r3 >> 16) & 255] & 255) << 16)
^ (S[(r0 >> 24) & 255] << 24) ^ KW[r][1];
C2 = (S[r2 & 255] & 255) ^ ((S[(r3 >> 8) & 255] & 255) << 8) ^ ((S[(r0 >> 16) & 255] & 255) << 16)
^ (S[(r1 >> 24) & 255] << 24) ^ KW[r][2];
C3 = (S[r3 & 255] & 255) ^ ((S[(r0 >> 8) & 255] & 255) << 8) ^ ((S[(r1 >> 16) & 255] & 255) << 16)
^ (S[(r2 >> 24) & 255] << 24) ^ KW[r][3];
intToLittleEndian(C0, out, outOff + 0);
intToLittleEndian(C1, out, outOff + 4);
intToLittleEndian(C2, out, outOff + 8);
intToLittleEndian(C3, out, outOff + 12);
}
private void decryptBlock(byte[] in, int inOff, byte[] out, int outOff, int[][] KW) {
int C0 = littleEndianToInt(in, inOff + 0);
int C1 = littleEndianToInt(in, inOff + 4);
int C2 = littleEndianToInt(in, inOff + 8);
int C3 = littleEndianToInt(in, inOff + 12);
int t0 = C0 ^ KW[ROUNDS][0];
int t1 = C1 ^ KW[ROUNDS][1];
int t2 = C2 ^ KW[ROUNDS][2];
int r = ROUNDS - 1, r0, r1, r2, r3 = C3 ^ KW[ROUNDS][3];
while (r > 1) {
r0 = inv_mcol((Si[t0 & 255] & 255) ^ ((Si[(r3 >> 8) & 255] & 255) << 8)
^ ((Si[(t2 >> 16) & 255] & 255) << 16) ^ (Si[(t1 >> 24) & 255] << 24)) ^ KW[r][0];
r1 = inv_mcol((Si[t1 & 255] & 255) ^ ((Si[(t0 >> 8) & 255] & 255) << 8)
^ ((Si[(r3 >> 16) & 255] & 255) << 16) ^ (Si[(t2 >> 24) & 255] << 24)) ^ KW[r][1];
r2 = inv_mcol((Si[t2 & 255] & 255) ^ ((Si[(t1 >> 8) & 255] & 255) << 8)
^ ((Si[(t0 >> 16) & 255] & 255) << 16) ^ (Si[(r3 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = inv_mcol((Si[r3 & 255] & 255) ^ ((Si[(t2 >> 8) & 255] & 255) << 8)
^ ((Si[(t1 >> 16) & 255] & 255) << 16) ^ (Si[(t0 >> 24) & 255] << 24)) ^ KW[r--][3];
t0 = inv_mcol((Si[r0 & 255] & 255) ^ ((Si[(r3 >> 8) & 255] & 255) << 8)
^ ((Si[(r2 >> 16) & 255] & 255) << 16) ^ (Si[(r1 >> 24) & 255] << 24)) ^ KW[r][0];
t1 = inv_mcol((Si[r1 & 255] & 255) ^ ((Si[(r0 >> 8) & 255] & 255) << 8)
^ ((Si[(r3 >> 16) & 255] & 255) << 16) ^ (Si[(r2 >> 24) & 255] << 24)) ^ KW[r][1];
t2 = inv_mcol((Si[r2 & 255] & 255) ^ ((Si[(r1 >> 8) & 255] & 255) << 8)
^ ((Si[(r0 >> 16) & 255] & 255) << 16) ^ (Si[(r3 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = inv_mcol((Si[r3 & 255] & 255) ^ ((Si[(r2 >> 8) & 255] & 255) << 8)
^ ((Si[(r1 >> 16) & 255] & 255) << 16) ^ (Si[(r0 >> 24) & 255] << 24)) ^ KW[r--][3];
}
r0 = inv_mcol((Si[t0 & 255] & 255) ^ ((Si[(r3 >> 8) & 255] & 255) << 8) ^ ((Si[(t2 >> 16) & 255] & 255) << 16)
^ (Si[(t1 >> 24) & 255] << 24)) ^ KW[r][0];
r1 = inv_mcol((Si[t1 & 255] & 255) ^ ((Si[(t0 >> 8) & 255] & 255) << 8) ^ ((Si[(r3 >> 16) & 255] & 255) << 16)
^ (Si[(t2 >> 24) & 255] << 24)) ^ KW[r][1];
r2 = inv_mcol((Si[t2 & 255] & 255) ^ ((Si[(t1 >> 8) & 255] & 255) << 8) ^ ((Si[(t0 >> 16) & 255] & 255) << 16)
^ (Si[(r3 >> 24) & 255] << 24)) ^ KW[r][2];
r3 = inv_mcol((Si[r3 & 255] & 255) ^ ((Si[(t2 >> 8) & 255] & 255) << 8) ^ ((Si[(t1 >> 16) & 255] & 255) << 16)
^ (Si[(t0 >> 24) & 255] << 24)) ^ KW[r][3];
// the final round's table is a simple function of Si
C0 = (Si[r0 & 255] & 255) ^ ((Si[(r3 >> 8) & 255] & 255) << 8) ^ ((Si[(r2 >> 16) & 255] & 255) << 16)
^ (Si[(r1 >> 24) & 255] << 24) ^ KW[0][0];
C1 = (Si[r1 & 255] & 255) ^ ((Si[(r0 >> 8) & 255] & 255) << 8) ^ ((Si[(r3 >> 16) & 255] & 255) << 16)
^ (Si[(r2 >> 24) & 255] << 24) ^ KW[0][1];
C2 = (Si[r2 & 255] & 255) ^ ((Si[(r1 >> 8) & 255] & 255) << 8) ^ ((Si[(r0 >> 16) & 255] & 255) << 16)
^ (Si[(r3 >> 24) & 255] << 24) ^ KW[0][2];
C3 = (Si[r3 & 255] & 255) ^ ((Si[(r2 >> 8) & 255] & 255) << 8) ^ ((Si[(r1 >> 16) & 255] & 255) << 16)
^ (Si[(r0 >> 24) & 255] << 24) ^ KW[0][3];
intToLittleEndian(C0, out, outOff + 0);
intToLittleEndian(C1, out, outOff + 4);
intToLittleEndian(C2, out, outOff + 8);
intToLittleEndian(C3, out, outOff + 12);
}
private int bitsOfSecurity() {
if (WorkingKey == null) {
return 256;
}
return (WorkingKey.length - 7) << 5;
}
}